Sporadic Reinhardt Polygons
نویسندگان
چکیده
منابع مشابه
Sporadic Reinhardt Polygons
Let n be a positive integer, not a power of two. A Reinhardt polygon is a convex n-gon that is optimal in three different geometric optimization problems: it has maximal perimeter relative to its diameter, maximal width relative to its diameter, and maximal width relative to its perimeter. For almost all n, there are many Reinhardt polygons with n sides, and many of them exhibit a particular pe...
متن کاملSymmetric continuous Reinhardt domains
whenever |ζ1|, . . . , |ζn| ≤ 1 . In 1974 [11] Sunada investigated the structure of bounded Reinhardt domains containing the origin from the viewpoint of biholomorphic equivalence. He was able to describe completely the symmetric Reihardt domains which, up to linear isomomorphism, turned to be direct products of Euclidean balls. Our aim in this paper is to study infinite dimensional analogs of ...
متن کاملBounde Reinhardt domains in Banach spaces
© Foundation Compositio Mathematica, 1986, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...
متن کاملFinite Type Conditions on Reinhardt Domains
In this paper we prove that, if p is a boundary point of a smoothly bounded pseudoconvex Reinhardt domain in Cn, then the variety type at p is identical to the regular type. In this paper we study the finite type conditions on pseudoconvex Reinhardt domain. We prove that, if p is a boundary point of a smoothly bounded pseudoconvex Reinhardt domain in C, then the variety type at p is identical t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2013
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-012-9479-4